Neural networks in microwave circuit design?beyond black-box models (invited article)

Author(s):  
Mankuan Vai ◽  
Sheila Prasad
Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 749 ◽  
Author(s):  
Jorge E. Jiménez-Hornero ◽  
Inés María Santos-Dueñas ◽  
Isidoro García-García

Modelling techniques allow certain processes to be characterized and optimized without the need for experimentation. One of the crucial steps in vinegar production is the biotransformation of ethanol into acetic acid by acetic bacteria. This step has been extensively studied by using two predictive models: first-principles models and black-box models. The fact that first-principles models are less accurate than black-box models under extreme bacterial growth conditions suggests that the kinetic equations used by the former, and hence their goodness of fit, can be further improved. By contrast, black-box models predict acetic acid production accurately enough under virtually any operating conditions. In this work, we trained black-box models based on Artificial Neural Networks (ANNs) of the multilayer perceptron (MLP) type and containing a single hidden layer to model acetification. The small number of data typically available for a bioprocess makes it rather difficult to identify the most suitable type of ANN architecture in terms of indices such as the mean square error (MSE). This places ANN methodology at a disadvantage against alternative techniques and, especially, polynomial modelling.


2000 ◽  
Vol 27 (4) ◽  
pp. 671-682 ◽  
Author(s):  
N Lauzon ◽  
J Rousselle ◽  
S Birikundavyi ◽  
H T Trung

The purpose of this study is to compare three modeling approaches used for the prediction of daily natural flows 1-7 days ahead. Linear black-box models, which have been commonly used for modeling flows, constitute the first approach. The second approach, a linear type in the context of our application, is less known in the water resources field and is identified by the term diffusion process. The third approach uses models called neural networks, which have gained interest in many fields. All these approaches were tested on 15 watersheds from the Saguenay - Lac-Saint-Jean hydrographic system, located in the province of Quebec, Canada. Because the watersheds possess different physical characteristics, the models were tested under several runoff conditions. In this article, the focus is on results; all approaches along with their conditions of use have been detailed elsewhere in the literature. The results obtained showed that neural networks constitute, for almost all the watersheds studied, the best approach to forecast daily natural flows. The more flexible structure of neural networks allows a best reproduction of complex runoff conditions. However, neural networks are more sensitive to outliers present in observed natural flow series, which are used as inputs in the three models tested. In practice, to model flows at specific periods of the year, it seems preferable to establish seasonal models. If a neural network has an inadequate structure for the period under consideration, then it may produce less convincing results than the other two modeling approaches tested in this study.Key words: forecasts, flows, black-box model, diffusion process, neural network.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6749
Author(s):  
Reda El Bechari ◽  
Stéphane Brisset ◽  
Stéphane Clénet ◽  
Frédéric Guyomarch ◽  
Jean Claude Mipo

Metamodels proved to be a very efficient strategy for optimizing expensive black-box models, e.g., Finite Element simulation for electromagnetic devices. It enables the reduction of the computational burden for optimization purposes. However, the conventional approach of using metamodels presents limitations such as the cost of metamodel fitting and infill criteria problem-solving. This paper proposes a new algorithm that combines metamodels with a branch and bound (B&B) strategy. However, the efficiency of the B&B algorithm relies on the estimation of the bounds; therefore, we investigated the prediction error given by metamodels to predict the bounds. This combination leads to high fidelity global solutions. We propose a comparison protocol to assess the approach’s performances with respect to those of other algorithms of different categories. Then, two electromagnetic optimization benchmarks are treated. This paper gives practical insights into algorithms that can be used when optimizing electromagnetic devices.


We provide a framework for investment managers to create dynamic pretrade models. The approach helps market participants shed light on vendor black-box models that often do not provide any transparency into the model’s functional form or working mechanics. In addition, this allows portfolio managers to create consensus estimates based on their own expectations, such as forecasted liquidity and volatility, and to incorporate firm proprietary alpha estimates into the solution. These techniques allow managers to reduce overdependency on any one black-box model, incorporate costs into the stock selection and portfolio optimization phase of the investment cycle, and perform “what-if” and sensitivity analyses without the risk of information leakage to any outside party or vendor.


Sign in / Sign up

Export Citation Format

Share Document